Thursday, December 16, 2010

Bentuk Aljabar Dan Persamaan Linear

Bentuk Aljabar Dan Persamaan Linear

PROGRAM PENDIDIKAN MATEMATIKA
TAHUN AKADEMIK 2010 – 2011

A. Operasi Hitung Bentuk Aljabar
Di Kelas VII, kamu telah mempelajari pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut.
1. 2pq 4. x2 + 3x –2
2. 5x + 4 5. 9x2 – 3xy + 8
3. 2x + 3y –5
Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut.
1. Suku yang memuat variabel x, koefisiennya adalah 5.
2. Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah.
Sekarang, pada bentuk aljabar nomor (3), (4), dan (5), coba kamu tentukan manakah yang merupakan koefisien, variabel, konstanta, dan suku?
1. Penjumlahan dan Pengurangan Bentuk Aljabar
Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya, sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil,
berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk aljabar, sebagai berikut.
a. Sifat Komutatif
a + b = b + a, dengan a dan b bilangan riil
b. Sifat Asosiatif
(a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil
c. Sifat Distributif
a (b + c) = ab + ac, dengan a, b, dan c bilangan riil

Agar kamu lebih memahami sifat-sifat yang berlaku pada bentuk aljabar, perhatikan contoh-contoh soal berikut.
Contoh Soal :
Sederhanakan bentuk-bentuk aljabar berikut.
a. 6mn + 3mn
b. 16x + 3 + 3x + 4
c. –x – y + x – 3
d. 2p – 3p2 + 2q – 5q2 + 3p
e. 6m + 3(m2 – n2) – 2m2 + 3n2
Jawab:
a. 6mn + 3mn = 9mn
b. 16x + 3 + 3x + 4 = 16x + 3x + 3 + 4
= 19x + 7
c. –x – y + x – 3 = –x + x – y – 3
    = –y – 3
d. 2p – 3p2 + 2q – 5q2 + 3p = 2p + 3p – 3p2 + 2q – 5q2
    = 5p – 3p2 + 2q – 5q2
    = –3p2 + 5p – 5q2 + 2q
e. 6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2
    = 6m + 3m2 – 2m2 – 3n2 + 3n2
    = m2 + 6m
Contoh Soal :
Tentukan hasil dari:
a. penjumlahan 10x2 + 6xy – 12 dan –4x2 – 2xy + 10,
b. pengurangan 8p2 + 10p + 15 dari 4p2 – 10p – 5.
Jawab:
a. 10x2 + 6xy – 12 + (–4x2 – 2xy + 10) = 10x2 – 4x2 + 6xy – 2xy – 12 + 10
     = 6x2 + 4xy – 2
b. (4p2 – 10p – 5) – (8p2 + 10p + 15) = 4p2 – 8p2 – 10p –10p – 5 – 15
     = –4p2 – 20p – 20
2. Perkalian Bentuk Aljabar
Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. Perkalian Suku Satu dengan Suku Dua
Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Gunakan hukum distributif untuk menyelesaikan perkalian berikut.
a. 2(x + 3) c. 3x(y + 5)
b. –5(9 – y) d. –9p(5p – 2q)
Jawab:
a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y d. –9p(5p – 2q) = –45p2 + 18pq
b. Perkalian Suku Dua dengan Suku Dua
Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan.
a. (x + 5)(x + 3) c. (2x + 4)(3x + 1)
b. (x – 4)(x + 1) d. (–3x + 2)(x – 5)
Jawab:
a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
    = x2 + 5x + 3x + 15
    = x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
    = x2 – 4x + x – 4
    = x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
    = 6x2 + 12x + 2x + 4
    = 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
    = –3x2 + 2x + 15x – 10
    = –3x2 + 17x – 10
Contoh Soal :
Diketahui sebuah persegipanjang memiliki panjang (5x + 3) cm dan lebar
(6x– 2) cm. Tentukan luas persegipanjang tersebut.
Jawab:
Diketahui : p = (5x + 3) cm dan l = (6x – 2) cm
Ditanyakan : luas persegipanjang
Luas = p × l
= (5x + 3)(6x – 2)
= (5x + 3)6x + (5x + 3)(–2)
= 30x2 + 18x – 10x – 6
= 30x2 + 8x – 6
Jadi, luas persegipanjang tersebut adalah (30x2 + 8x – 6) cm2
Amati kembali Contoh Soal. Ternyata perkalian dua suku bentuk aljabar (a + b) dan (c + d) dapat ditulis sebagai berikut.
(a + b)(c + d) = (a + b)c + (a + b)d
= ac + bc + ad + bd
= ac + ad + bc + bd
Secara skema, perkalian ditulis:

Cara seperti ini merupakan cara lain yang dapat digunakan untuk menyelesaikan perkalian antara dua buah suku bentuk aljabar. Pelajari contoh soal berikut.
Contoh Soal :
Selesaikan perkalian-perkalian berikut dengan menggunakan cara skema.
a. (x + 1)(x + 2) c. (x – 2)(x + 5)
b. (x + 8)(2x + 4) d. (3x + 4)(x – 8)
Jawab:
a. (x + 1)(x + 2) = x2 + 2x + x + 2
    = x2 + 3x + 2
b. (x + 8)(2x + 4) = 2x2 + 4x + 16x + 32
    = 2x2 + 20x + 32
c. (x – 2)(x + 5) = x2 + 5x –2x –10
    = x2 + 3x – 10
d. (3x + 4)(x –8) = 3x2 – 24x + 4x – 32
     = 3x2 – 20x – 32
3. Pembagian Bentuk Aljabar
Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut.
Contoh Soal :
Tentukan hasil pembagian berikut.
a. 8x : 4 c. 16a2b : 2ab
b. 15pq : 3p d. (8x2 + 2x) : (2y2 – 2y)
Jawab:
Image:jawab aljabar 1.jpg
4. Perpangkatan Bentuk Aljabar
       Di Kelas VII, kamu telah mempelajari definisi bilangan berpangkat. Pada bagian ini materi tersebut akan dikembangkan, yaitu memangkatkan bentuk aljabar. Seperti yang telah kamu ketahui, bilangan berpangkat didefinisikan sebagai berikut.

Untuk a bilangan riil dan n bilangan asli.
Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. a5 = a × a × a × a × a
b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3
c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p)
= ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4
d. (4x2y)2 = (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2
Sekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2 dapat ditulis:
(a + b)2 = (a + b) (a + b)
= (a + b)a + (a + b)b
= a2 + ab + ab + b2
= a2 + 2ab + b2
Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai:
(a – b)2 = (a – b) (a – b)
= (a – b)a + (a – b)(–b)
= a2 – ab – ab + b2
= a2 – 2ab + b2
Contoh Soal :
Image:jawab aljabar 2.jpg

Selanjutnya, akan diuraikan bentuk (a + b)3, sebagai berikut.
(a + b)3 = (a + b) (a + b)2
= (a + b) (a2 + 2ab + b2) (a+b)2 = a2 + 2ab + b2
= a(a2 + 2ab + b2 ) + b (a2 + 2ab + b2 ) (menggunakan cara skema)
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3 (suku yang sejenis dikelompokkan)
= a3 + 2a2b + a2b + ab2 +2ab2 + b3 (operasikan suku-suku yang sejenis)
= a3 + 3a2b + 3ab2 + b3
Untuk menguraikan bentuk aljabar (a + b)2, (a + b)3, dan (a + b)4, kamu dapat menyelesaikannya dalam waktu singkat. Akan tetapi, bagaimana dengan bentuk aljabar (a + b)5, (a + b)6, (a + b)7, dan seterusnya? Tentu saja kamu juga dapat menguraikannya, meskipun akan memerlukan waktu yang lebih lama. Untuk memudahkan penguraian perpangkatan bentuk-bentuk aljabar tersebut, kamu bisa menggunakan pola segitiga Pascal . Sekarang, perhatikan pola segitiga Pascal berikut.

Hubungan antara segitiga Pascal dengan perpangkatan suku dua bentuk aljabar adalah sebagai berikut.

Sebelumnya, kamu telah mengetahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya pasti sama, yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan suku dua (a + b)3, (a + b)4, (a + b)5, dan seterusnya dapat diuraikan sebagai berikut.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
dan seterusnya.
Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Pelajarilah uraian berikut.
(a – b)2 = a2 – 2ab + b2
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5
B. Pemfaktoran Bentuk Aljabar
1. Pemfaktoran dengan Sifat Distributif
Di Sekolah Dasar, kamu tentu telah mempelajari cara memfaktorkan suatu bilangan. Masih ingatkah kamu mengenai materi tersebut? Pada dasarnya, memfaktorkan suatu bilangan berarti menyatakan suatu bilangan dalam bentuk perkalian faktor-faktornya. Pada bagian ini, akan dipelajari cara-cara memfaktorkan suatu bentuk aljabar dengan menggunakan sifat distributif. Dengan sifat ini, bentuk aljabar ax + ay dapat difaktorkan menjadi a(x + y), di mana a adalah faktor persekutuan dari ax dan ay. Untuk itu, pelajarilah Contoh Soal berikut.
Contoh Soal :
Faktorkan bentuk-bentuk aljabar berikut.
a. 5ab + 10b c. –15p2q2 + 10pq
b. 2x – 8x2y d. 1/2 a3b2 + 1/4 a2b3

Jawab:
a. 5ab + 10b
Untuk memfaktorkan 5ab + 10b, tentukan faktor persekutuan dari 5 dan
10, kemudian dari ab dan b. Faktor persekutuan dari 5 dan 10 adalah 5.
Faktor persekutuan dari ab dan b adalah b.
Jadi, 5ab + 10b difaktorkan menjadi 5b(a + 2).

b. 2x – 8x2y
Faktor persekutuan dari 2 dan –8 adalah 2. Faktor persekutuan dari x dan x2y adalah x.
Jadi, 2x – 8x2y = 2x(1 – 4xy).

c. –15p2q2 + 10pq
Faktor persekutuan dari –15 dan 10 adalah 5. Faktor persekutuan dari p2q2 dan pq adalah pq.
Jadi, –15p2q2 + 10pq = 5pq (–3pq + 2).

d. 1/2 a3b2 + 1/4 a2b3
Faktor persekutuan dari 1/2 dan 1/4 adalah 1/4.
Faktor persekutuan dari a3b2 adalah a2b3 adalah a2b2.
Jadi, 1/2 a3b2 + 1/4 a2b3 = 1/4 a2b2 (2a +b)
2. Selisih Dua Kuadrat
Perhatikan bentuk perkalian (a + b)(a – b). Bentuk ini dapat ditulis
(a + b)(a – b) = a2 – ab + ab – b2
= a2 – b2
Jadi, bentuk a2 – b2 dapat dinyatakan dalam bentuk perkalian (a + b) (a – b).


Bentuk a2 – b2 disebut selisih dua kuadrat
Contoh Soal :
Faktorkan bentuk-bentuk berikut.
a. p2 – 4 c. 16 m2 – 9n2
b. 25x2 – y2 d. 20p2 – 5q2
Jawab:
a. p2 – 4 = (p + 2)(p – 2)
b. 25x2 – y2 = (5x + y)(5x – y)
c. 16m2 – 9n2 = (4m + 3n)(4m – 3n)
d. 20p2 – 5q2 = 5(4p2 – q2) = 5(2p + q)(2p – q)
3. Pemfaktoran Bentuk Kuadrat
a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1
Perhatikan perkalian suku dua berikut.
(x + p)(x + q) = x2 + qx + px + pq
= x2 + (p + q)x + pq
Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq.

Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.
Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut.
Contoh Soal :
Faktorkanlah bentuk-bentuk berikut.
a. x2 + 5x + 6 b. x2 + 2x – 8
Jawab:
a. x2 + 5x + 6 = (x + …) (x + …)
Misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.
Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6
dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5.
Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan
Jadi, x2 + 5x + 6 = (x + 2) (x + 3)
b. x2 + 2x – 8 = (x + …) (x + …)
Dengan cara seperti pada (a), diperoleh a = 1, b = 2, dan c = –8.
Faktor dari 8 adalah 1, 2, 4, dan 8. Oleh karena c = –8, salah satu dari
dua bilangan yang dicari pastilah bernilai negatif. Dengan demikian, dua
bilangan yang memenuhi syarat adalah –2 dan 4, karena –2 × 4 = –8 dan
–2 + 4 = 2.
Jadi, x2 + 2x – 8 = (x + (–2)) (x + 4) = (x – 2) (x + 4)
b. Pemfaktoran Bentuk ax2 + bx + c dengan a ≠ 1
Sebelumnya, kamu telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1.
Perhatikan perkalian suku dua berikut.
(x + 3) (2x + 1) = 2x2 + x + 6x + 3
= 2x2 + 7x + 3
Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2x2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.
2x2 + 7x + 3 = 2x2 + (x + 6 x) +3 (uraikan 7x menjadi penjumlahan dua suku yaitu pilih ( x + 6x )
= (2x2 + x) + (6x + 3)
= x(2x + 1) + 3(2x + 1) (Faktorkan menggunakan sifat distributif)
= (x + 3)(2x+1)
Dari uraian tersebut dapat kamu ketahui cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1 sebagai berikut.
1. Uraikan bx menjadi penjumlahan dua suku yang apabila kedua suku tersebut dikalikan hasilnya sama dengan (ax2)(c).
2. Faktorkan bentuk yang diperoleh menggunakan sifat distributif
Contoh Soal :
Faktorkan bentuk-bentuk berikut.
a. 2x2 + 11x + 12 b. 6x2 + 16x + 18
Jawab:
a. 2x2 + 11x + 12 = 2x2 + 3x + 8x + 12
= (2x2 + 3x) + (8x + 12)
= x(2x + 3) + 4(2x + 3)
= (x + 4)(2x + 3)
Jadi, 2x2 + 11x + 12 = (x + 4)(2x + 3).
b. 6x2 + 16x + 8 = 6x2 + 4x + 12x + 8
= (6x2 + 4x) + (12x + 8)
= 2x(3x + 2) + 4(3x + 2)
= (2x + 4)(3x + 2)
Jadi, 6x2 + 16x + 8 = (2x + 4)(3x +2)


C. Pecahan dalam Bentuk Aljabar
1. Penjumlahan dan Pengurangan Pecahan Bentuk Aljabar
Di Kelas VII, kamu telah mempelajari cara menjumlahkan dan mengurangkan pecahan. Pada bagian ini, materi tersebut dikembangkan sampai dengan operasi penjumlahan dan pengurangan pecahan bentuk aljabar. Cara menjumlahkan dan mengurangkan pecahan bentuk aljabar adalah sama dengan menjumlahkan dan mengurangkan pada pecahan biasa,
yaitu dengan menyamakan penyebutnya terlebih dahulu. Agar kamu lebih memahami materi ini, pelajari contoh-contoh soal berikut.
Contoh Soal :
Image:jawab aljabar 4.jpg
Contoh Soal :

Image:jawab aljabar 5.jpg
Image:jawab aljabar 6.jpg


2. Perkalian dan Pembagian Pecahan Bentuk Aljabar
a. Perkalian
Cara mengalikan pecahan bentuk aljabar sama dengan mengalikan pecahan biasa, yaitu


Agar kamu lebih memahami materi perkalian pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :





b. Pembagian
Aturan pembagian pada pecahan bentuk aljabar sama dengan aturan pembagian pada pecahan biasa, yaitu :


Contoh Soal :

Contoh Soal :
Image:jawab aljabar 7.jpg
Image:jawab aljabar 8.jpg



3. Perpangkatan Pecahan Bentuk Aljabar
Pada bagian sebelumnya, kamu telah mengetahui bahwa untuk a bilangan riil dan n bilangan asli, berlaku:

Definisi bilangan berpangkat tersebut berlaku juga pada pecahan bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
Image:jawab aljabar 10.jpg

Contoh Soal :
Image:jawab aljabar 11.jpg

Image:jawab aljabar 12.jpg
4. Penyederhanaan Pecahan Bentuk Aljabar
Masih ingatkah kamu materi penyederhanaan pecahan yang telah dipelajari di Kelas VII? Coba jelaskan dengan menggunakan kata-katamu sendiri. Sekarang kamu akan mempelajari cara menyederhanakan pecahan bentuk aljabar. Untuk itu, pelajari uraian berikut ini.
a.

Contoh soal :
Image:jawab aljabar 20.jpg
Image:jawab aljabar 21.jpg

Untuk menyederhanakan bentuk , tentukan faktor persekutuan dari pembilang dan penyebutnya.
Kemudian, bagilah pembilang dan penyebutnya dengan faktor persekutuan tersebut.
Faktor persekutuan dari 5x dan 10 adalah 5.
Jadi,
b.
Faktor persekutuan dari 9p dan 27q adalah 9.
Jadi,
c.
Untuk menyederhanakan bentuk
tentukan faktor penyebutnya sehingga
Jadi,
Agar kamu lebih memahami materi penyederhanaan pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh soal :





A. Pengertian SPLDV
Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.
1. Persamaan Linear Satu Variabel
Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.

Bentuk-bentuk persamaan tersebut memiliki satu variabel yang belum diketahui nilainya. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.1 secara seksama.



________________________________________
Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.

Jadi, diperoleh nilai x = 4 dan himpunan penyelesaian, Hp = {4}. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.2 berikut.




2. Persamaan Linear Dua Variabel
Kamu telah mempelajari dan memahami persamaan linear satu variabel. Materi tersebut akan membantu kamu untuk memahami persamaan linear dua variabel. Coba kamu perhatikan bentuk-bentuk persamaaan berikut.

Persamaan-persamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.3 berikut.




3. Sistem Persamaan Linear Dua Variabel
Coba kamu perhatikan bentuk-bentuk persamaan linear dua variabel berikut.

Dari uraian tersebut terlihat bahwa masing-masing memiliki dua buah persamaan linear dua variabel. Bentuk inilah yang dimaksud dengan Sistem Persamaan Linear Dua Variabel (SPLDV). Berbeda dengan persamaan dua variabel, SPLDV memiliki penyelesaian atau himpunan penyelesaian yang harus memenuhi kedua persamaan linear dua variabel tersebut. Contoh, perhatikan sistem SPLDV berikut.

Penyelesaian dari sistem persamaan linear adalah mencari nilai-nilai x dan y yang dic ari demikian sehingga memenuhi kedua persamaan linear. Perhatikan Tabel 4.1 berikut ini.

Tabel 4.1 menjelaskan bahwa persamaan linear 2x + y = 6 memiliki 4 buah penyelesaian. Adapun persamaan linear x + y = 5 memiliki 6 buah penyelesaian. Manakah yang merupakan penyelesaian dari 2 x + y = 6 dan x + y = 5? Penyelesaian adalah nilai x dan y yang memenuhi kedua persamaan linear tersebut. Perhatikan dari Tabel 4. 1 nilai x = 1 dan y = 4 sama-sama
memenuhi penyelesaian dari kedua persamaan linear tersebut. Jadi, dapat dituliskan:




B. Penyelesaian SPLDV
Seperti yang telah dipelajari sebelumnya, SPLDV adalah persamaan yang memiliki dua buah persamaan linear dua variabel. Penyelesaian SPLDV dapat ditentukan dengan cara mencari nilai variabel yang memenuhi kedua persamaan linear dua variabel tersebut. Pada subbab sebelumnya, kamu telah mempelajari bagaimana cara menentukan penyelesaian suatu SPLDV dengan menggunakan tabel, namun cara seperti itu membutuhkan waktu yang cukup lama. Untuk itu, ada beberapa
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:
1. Metode Grafik
2. Metode Substitusi
3. Metode Eliminasi
Pelajarilah uraian mengenai metode-metode tersebut pada bagian berikut ini.
1. Metode Grafik
Grafik untuk persamaan linear dua variabel berbentuk garis lurus. Bagaimana dengan SPLDV? Ingat, SPLDV terdiri atas dua buah persamaan dua variabel, berarti SPLDV digambarkan berupa dua buah garis lurus. Penyelesaian dapat ditentukan dengan menentukan titik potong kedua garis lurus tersebut. Untuk lebih jelasnya, coba perhatikan dan pelajari Contoh Soal 4.6 dan Contoh Soal 4.7




2. Metode Substitusi
Penyelesaian SPLDV menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian SPLDV dengan menggunakan metode substitusi dapat kamu pelajari dalam Contoh Soal 4.8 dan Contoh Soal 4.9



3. Metode Eliminasi
Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.10 dan Contoh Soal 4.11


C. Penerapan SPLDV
Dalam kehidupan sehari-hari, banyak sekali permasalahan-permasalahan yang dapat dipecahkan menggunakan SPLDV. Pada umumnya, permasalahan tersebut berkaitan dengan masalah aritmetika sosial. Misalnya, menentukan harga satuan barang, menentukan panjang atau lebar sebidang tanah, dan lain sebagainya. Agar kamu lebih memahami, perhatikan dan pelajari
contoh-contoh soal berikut.





No comments:

Post a Comment

10 Cara Dapatkan Penghasilan Pasif dari Aset Kripto

  Semua pecinta aset kripto nampaknya paham bahwa cara paling umum dalam mendulang cuan di aset kripto adalah dengan   trading . Hanya saja,...